
ORIGINAL RESEARCH
published: 31 July 2018

doi: 10.3389/fnhum.2018.00302

Frontiers in Human Neuroscience | www.frontiersin.org 1 July 2018 | Volume 12 | Article 302

Edited by:
Xiaolin Zhou,

Peking University, China

Reviewed by:
Connie Svob,

Columbia University, United States
Carlotta Fossataro,

Università degli Studi di Torino, Italy

*Correspondence:
David M. Eagleman

davideagleman@stanford.edu

†These authors have contributed
equally to this work.

Received: 08 March 2018
Accepted: 12 July 2018
Published: 31 July 2018

Citation:
Vaughn DA, Savjani RR, Cohen MS
and Eagleman DM (2018) Empathic

Neural Responses Predict Group
Allegiance.

Front. Hum. Neurosci. 12:302.
doi: 10.3389/fnhum.2018.00302

Empathic Neural Responses Predict
Group Allegiance
Don A. Vaughn 1,2†, Ricky R. Savjani 3†, Mark S. Cohen 1 and David M. Eagleman 4*

1 Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA,
United States, 2 Department of Psychology, Santa Clara University, Santa Clara, CA, United States,3 Texas A&M University,
College Station, TX, United States,4 Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA,
United States

Watching another person in pain activates brain areas involved in the sensation of our
own pain. Importantly, this neural mirroring is not constant; rather, it is modulated by our
beliefs about their intentions, circumstances, and group allegiances. We investigated if
the neural empathic response is modulated by minimally-differentiating information (e.g.,
a simple text label indicating another's religious belief), and if neural activity changes
predict ingroups and outgroups across independent paradigms. We found that the
empathic response was larger when participants viewed a painful event occurring to
a hand labeled with their own religion (ingroup) than to a hand labeled with a different
religion (outgroup). Counterintuitively, the magnitude of this bias correlated positively
with the magnitude of participants' self-reported empathy. A multivariate classi�er, using
mean activity in empathy-related brain regions as features, discriminated ingroup from
outgroup with 72% accuracy; the classi�er's con�dence correlated with belief certainty.
This classi�er generalized successfully to validation experiments in which the ingroup
condition was based on an arbitrary group assignment. Empathy networks thus allow
for the classi�cation of long-held, newly-modi�ed and arbitrarily-formed ingroups and
outgroups. This is the �rst report of a single machine learning model on neural activation
that generalizes to multiple representations of ingroup and outgroup. The current �ndings
may prove useful as an objective diagnostic tool to measure the magnitude of one's group
af�liations, and the effectiveness of interventions to reduce ingroup biases.

Keywords: empathy, pain, ingroup, machine learning, religio n, social neuroscience, mind reading, affect

INTRODUCTION

Neuroimaging reveals that watching another person in pain activates brain areas involved in the
sensation of our own pain (Singer, 2004; Botvinick et al., 2005; Hein and Singer, 2008;Valeriani
et al., 2008; Jacoby et al., 2016). Importantly, this neural mirroring is not constant; rather, it
is modulated by our beliefs about their intentions, circumstances, and group allegiances. For
example, there is a diminished response in this empathy networkfor pain if the observer believes
the pain-recipient has acted unfairly in a simple economic exchange (Singer et al., 2006). A
similar reduction occurs when the observer is told that the victim is receiving a large monetary
compensation for undergoing the pain (Guo et al., 2011).
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Modulation of empathy-associated activity occurs with group
distinctions, as well. A larger activation for ingroups (vs.
outgroups) has been demonstrated in the context of sports
teams (Hein et al., 2010; Cikara et al., 2011), and racial
identity (Xu et al., 2009; Azevedo et al., 2013; Contreras-
Huerta et al., 2013). Generally, this ingroup bias translates
into actions: neural activation in empathy-related areas predicts
prosocial action (Hein et al., 2010; Christov-Moore and Iacoboni,
2016). Thus, understanding and quantifying these biases has
important practical considerations, from jury decision-making
to group pro�ling to genocides. However, it is unknown
whether di�erences in low-level empathic biases are induced by
ingroup/outgroup distinctions more generally, and how �uidly
they can change.

In the current experiments, we sought to evaluate: (1) whether
brain responses in empathy-associated areas di�er between
minimalistic representations of religious ingroups and religious
outgroups, (2) whether the observed brain responses are related
to self-reported empathy, (3) if multivariate brain responses
reliably predict participants' ingroup and outgroup conditions,
and (4) whether these di�erential empathic responses extend to
loose and arbitrary ingroup and outgroup categories.

MATERIALS AND METHODS

Participants
We recruited 135 participants (29� 9 years, 63 males, 108
right-handed) with normal or corrected-to-normal vision.We
used �yers posted around the greater Houston area (e.g., police
stations, �re stations, and community centers) to recruit a
wide range of participants. This recruiting approach successfully
captured a diverse group with varied backgrounds. Participants
were compensated for their time.

Data from 8 participants were excluded due to errors on MR
image acquisition or reconstruction, and 22 participants were
excluded from analysis due to excessive head motion (absolute
mean displacement> 3.0 mm), leaving 105 participants in total
for analysis. Of these 105 participants, 67 participants were used
in Experiment 1, and a subset of 14 of those participants were
used in Experiment 2. Separately, 14 participants were involved
in Experiment 3. Importantly, 24 participants were involved in
Experiment 1 or Experiment 2, but their data were not used in
the ingroup/outgroup analyses, as they professed their religion
to be agnostic. All 105 participants underwent the baseline block
(see below) with neutrally-labeled hands, and their data were
used in the functional localization of the empathy and relief
networks. However, there was no overlap in participants between
the three experiments; thus, the three ingroup/outgroup analyses
were independent.

Participants were told they were being recruited for a study
on the relationship between pain and memory. The study
was classi�ed as deceptive research since our true interest—
understanding the neural empathic response—was not disclosed
to participants. We conducted the collection of this data at
Baylor College of Medicine (BCM) while authors DAV, RRS, and
DME were (but no longer are) BCM employees. The study was
approved by the BCM Institutional Review Board (IRB), as the
protocol was deemed to be of no potential harm. Each and all

subjects read, agreed to, and signed a written consent form, which
was also reviewed and approved by the BCM IRB.

Behavioral Questionnaires
First, we asked participants to declare their religious beliefas
speci�cally as possible (including “agnostic” or “atheist”). The
participants' self-reported religious a�liations were distributed as
follows: 24 agnostics, 11 atheists, 49 Christians, 4 Hindus, 2Jews,
1 Muslims, 0 Scientologists. Next, participants completed a brief
survey that quanti�ed empathy (Mehrabian, 1996)—Balanced
Emotional Empathy Scale (BEES)—and degree of religious
conviction. The religious conviction scale was adapted to map
onto a portion of Richard Dawkins' 7 point scale, replacing
“religion” by “religious belief ” (Dawkins, 2008). A value of 1–4
on his scale corresponds to 0–3 on our scale; thus the 0 on our
modi�ed scale corresponds to complete uncertainty in a religious
belief and 3 to complete certainty. A Christian who identi�es
culturally but not ideologically might respond with a 0, whilea
completely certain atheist would respond with a 3. Participants'
mean response score on this metric was 2.85� 0.99.

Stimuli
All stimuli were programmed in MATLAB (The Mathworks Inc.,
Natick, USA) with PsychToolbox (Brainard, 1997). Participants
viewed the stimuli on a back-projected screen while lying supine
in the scanner (see Supplementary Movie M1).

Baseline Block
Using blood-oxygenation level dependent (BOLD) signal from
functional magnetic resonance imaging (fMRI), we implemented
a simple functional localization paradigm to identify regions
involved in pain-related empathy. During each of 12 trials in this
baseline block, a participant saw 6 hands appear on the screen
(labeled neutrally as “Hand #1,” “Hand #2,” etc.). Each handwas
similar in skin tone as well as apparent age and di�erentiated
from others by an arbitrarily-assigned bracelet and text label that
was intended to give each hand a unique identity. Two to four
seconds later, one hand was selected randomly by the computer,
indicated by the addition of a red border around the image. After
6 s, the selected image moved into the middle of the screen and
became a 2.3 s video of that hand being stabbed with a needle
(baseline stab), or, alternatively, touched with a cotton swab
(baseline touch) (Figure 1A, Figure S1, Supplementary Movie
M1). During each trial the position of these hands on the screen
was randomized. The text label remained with the hand to which
it was assigned.

Because each participant saw multiplestabandtouchtrials in
the course of an experiment, we �lmed stabbing and touching
events from six di�erent angles to reduce desensitization. Inmost
versions of the experiment, except as noted below, participants
began by observing 6stabtrials and 6touchtrials; the contrast
of thesebaselineconditions served as a functional localizer for
us to de�ne the empathyand relief networks operationally.
Observations were separated by a blank screen of at least 8–12s
(the inter-trial interval). The display position of each hand and its
associated text label was shu�ed for each trial. Participants then
were assigned to one of three experimental conditions, which
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FIGURE 1 | Localizing empathy.(A) In each trial, hands appeared with impartial text labels. Thecomputer selected a hand, and that hand received either a stab or a
touch. (B) Whole brain contrasts ofbaseline stab> baseline touchand baseline touch> baseline stabyielded 6 and 7 signi�cant clusters, respectively (p < 0.05 FWE)
shown here in MNI coordinates from� 12 mm to 58 mm in 14 mm increments.

were identical in structure, but di�erent in the construction of
ingroupandoutgroupconditions.

EXPERIMENT 1: INGROUP vs. OUTGROUP

For the remainder of the experiment, religious group labels were
presented above each hand, replacing the previous impartial text
labels (Figure 2A). The following 60 trials were identical to the
baseline block with the exception of religious hand labeling. For
each participant, the religious labels were assigned randomly to
the hands, but once assigned, remained with the same hands for
the duration.

EXPERIMENT 2: FLEXIBILITY

In Experiment 2, we studied the in�uence of making a former
religious outgroup member more closely connected with an
ingroup through an alliance. We assigned the six religions
arbitrarily to two groups of three hands: the green team and
the blue team (Figure 3D top). A text box said that three of the
religions were now at war with the three other religions. The
outgroup religions that were on the same team as one's own
ingroup religion were consideredallies.

EXPERIMENT 3: ARBITRARY TEAMS

In Experiment 3, participants were assigned randomly to one
of two �ctional groups (the Augustinians and the Justinians)
before the fMRI portion of the experiment began. Speci�cally,
participants began by tossing a coin: heads would assign a
participant to one team and tails to the other. The assignment
relationship was thus randomized across participants, who knew
that the assignment was arbitrary. They were next handed a

bracelet for their team (either Augustinian or Justinian), which
they were instructed to wear. This was intended both to remind
them of their team and bond them to it. Aside from the
new a�liations, the paradigm was identical to Experiment 1
(Figure 3Dbottom).

Behavioral Response
In each experiment, participants were told that the purpose
of the study was to examine the e�ects of pain on memory.
They therefore believed they were watching labeled hands being
stabbed to see how the presence of pain helped them to remember
which hand had been selected on any given trial. To buttress
this impression (as well as to quantify alertness), we asked
participants on a random 20% of trials to report which religion
was associated with the selected hand 10–14 s after the trial. All
participants had performance above 80%.

MR Image Acquisition
Data were acquired on a Siemens 3T Trio (Erlangen, Germany)
scanner. First, high resolution T1-weighted scans were acquired
using an MPRage sequence (0.4785� 0.4785� 1.0 mm voxels).
Functional image acquisition details were as follows: echo-planar
imaging, gradient recalled echo; repetition time (TR)D 2,000 ms;
echo time (TE)D 40 ms; �ip angleD90� ; 64� 64 matrix, twenty
nine 4 mm axial slices, yielding functional 3.4� 3.4 � 4.0 mm
voxels, one� 30 min run.

Preprocessing
fMRI data processing was carried out using FEAT (FMRI Expert
Analysis Tool) Version 6.00, part of FSL 5.0.9 (FMRIB's Software
Library, www.fmrib.ox.ac.uk/fsl). The �rst two volumes from
every participant's functional run were discarded. We applied
the following pre-statistics processing: motion correction using
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FIGURE 2 | Religious labels modulate empathic neural response.(A) Experiment 1 was identical in structure and timing to the baseline block but used religious labels
instead of impartial labels.(B) When a participant saw their ingroup, in comparison to theiroutgroup, stabbed or touched, neural activation was signi�cantly higher in
the empathy network (**p < 0.01 corrected) and relief network (**p < 0.01 corrected, repeated measures ANOVA, paired data,n D 67 participants).(C) Participant
scores on the Balanced Emotional Empathy Scale (BEES) correlated with their ingroup – outgroupbias in the empathy network.(D) A whole-brain ingroup> outgroup
contrast yielded three signi�cant regions: the mPFC, PCC/precuneus, and pSTS/TPJ (p < 0.05 FWE). These areas are involved in cognitive empathy andperspective
taking; we refer to them collectively as the mentalizing network. The mentalizing network right pSTS is more medial thanthe relief network right pSTS cluster. No
signi�cant voxels appeared in the contrastoutgroup> ingroup.

MCFLIRT (Jenkinson et al., 2002); slice-timing correction using
Fourier-space time-series phase-shifting; non-brain removal
using BET (Smith, 2002); spatial smoothing using a Gaussian
kernel of FWHM 5 mm; grand-mean intensity normalization of
the entire 4D dataset by a single multiplicative factor; highpass
temporal �ltering (Gaussian-weighted least-squares straight line
�tting, with sigma D 30 s). All �rst level analyses and model
�tting were conducted in the functional space.

For group level analyses, we registered parameter estimates
and contrasts of beta weights to the MNI152 template brain.
Registration to high-resolution structural images was carried out
using FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002)
(full-search, boundary based registration, or BBR). Registration
from high resolution structural to standard space was then
further re�ned using FNIRT nonlinear registration (Andersson,
2007a,b) (full-search, 12 DOF, warp resolution 10 mm).

GLM Analysis
We �t a general linear model (GLM) to each participant's
time-series data using FSL FILM (FMRIB's improved linear
model) with local autocorrelation correction (Woolrich
et al., 2001). Six standard motion regressors and individual
motion outlier (RMS intensity di�erence to middle volume,
fsl_motion_outliers) regressors were added to the model. For
each trial condition (baseline, ingroup, outgroup, arbitrary
ingroup, arbitrary outgroup,and/or ally), a set of regressors
were included forstabandtouchtrials separately, corresponding
to the onset of the video of the hand being stabbed or
touched. In addition, a regressor for hand selection for each
condition was included, corresponding to the time when the
particular hand was selected. We also included regressors
marking the trial onset across all trials, the times at which
questions were asked, and the times at which buttons were
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FIGURE 3 | A multivariate classi�er discriminates ingroup from outgroup reliably in multiple paradigms.(A) The ROC curve for distinguishing the ingroup conditions
from the outgroup conditions. The AUC was 68%, which was signi�cantly greater than the chance AUC of 50% (p < 0.01, n D 268 instances, 100 chance curves
shown). (B) Participants' self-reported certainty of religious beliefs (scale from 0 to 3) correlated signi�cantly with classi�er prediction con�dence, suggesting that the
strength of an ingroup af�liation may be dependent on certainty. (C) The classi�er feature weights in the 14 non-visual regions ofthe empathy (purple), relief (green),
and mentalizing (yellow) networks. Translucent gray bars represent the 95% chance interval, and stars demarcate weights that contributed signi�cantly (p < 0.05
uncorrected). (D) Top: Experiment 2 was identical in structure to Experiment 1 except that participants were told that the hands were on two warring teams. Theally
condition is an outgroup on the same team as the participant's ingroup. Bottom: Participants �ipped a coin to receive an arbitrary assignment to one of two teams,
Justinian or Augustinian, thus de�ning theirarbitrary ingroupcondition. (E) The ROC curves for distinguishing the ingroup condition from the outgroup condition in the
two validation paradigms. The classi�er determined 64 and 71% of participants' ingroup condition correctly in Experiment 2 (pink) and Experiment 3 (maroon),
respectively.

selected for the answers. For each regressor, we �t a temporal
derivative regressor to allow for slight o�sets of peak timings.
The durations of each each event were modeled as impulses
(0.1 s).

Group Analysis
First, we identi�ed the empathy and relief networks by
contrasting the initial 6stabtrials with the initial 6touchtrials
(baseline stab—baseline touch, Figure 1B). We used FSL FEAT
mixed e�ects modeling (FLAME 1) with outlier deweighting for
the group-level contrasts.

Next, we used whole brain search to identify regions outside
of the empathy network that responded more when theingroup
hand was stabbed painfully. Again, we used FLAME 1 with outlier
deweighting for the group-level contrastsingroup-outgroup.
Contrasts betweeningroups and outgroupswere conducted
on all participants who had de�nableingroupsand outgroups
(n D 67; agnostics were excluded since they had noingroup).
All univariate statistics were corrected for multiple comparisons
using Family-wise error (FWE) (Woo et al., 2014).

Note that we chose not to analyze results by the speci�c
religious groups, but instead by looking atingroupandoutgroups
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only (irrespective of the religion of the individual participants).
Our choice stemmed from the risk of poor or politically-
motivated interpretations that could arise erroneously from
insu�cient statistical power.

Multivariate Classi�cation
We implemented an L2-logistic regression classi�er to distinguish
participants' ingroup condition from their outgroup condition,
using BOLD signal change in selected ROIs as predictive features.
To rule out a classi�cation based on label text (Petersen et al.,
1990; Cohen et al., 2000; McCandliss et al., 2003), we did not use
visual areas from the Harvard-Oxford atlas (Frazier et al., 2005;
Desikan et al., 2006; Makris et al., 2006) as features.

We trained the classi�er oningroupvs.outgroup(Experiment
1) using the 11 non-visual ROIs from the empathy and
relief networks (derived from our GLM analysis) as predictive
features. We did not include the mentalizing network (see
Experiment 1 results) because it was derived from the contrast
ingroup-outgroupand therefore was non-independent from
the classi�cation. We assessed performance using leave-one-
participant-out cross validation (Figure S10A). We then retrained
the classi�er on the Experiment 1 data, this time including the
empathy, relief,and mentalizing network ROIs as features, and
applied it to the validation sets:ally vs.outgroup(Experiment 2)
andarbitrary ingroupvs.arbitrary outgroup(Experiment 3).

We used each stimulus condition (stab and touch) as a
separate instance for the classi�er, yielding 4 instances per
participant in all ingroup vs. outgroup classi�cations. In the
Experiment 1ingroupvs.outgroupclassi�cation, each participant
had the following instances:ingroup touch, ingroup stab,outgroup
touch, and outgroup stab(67 participants� 4 instancesD 268
instances). In the Experiment 2ally vs.outgroupclassi�cation,
each participant had the following instances:ally touch, ally
stab, outgroup touch, and outgroup stab(14 participants� 4
instancesD 56 instances). In the Experiment 3arbitrary ingroup
vs. arbitrary outgroupclassi�cation, each participant had the
following instances:arbitrary ingroup touch, arbitrary ingroup
stab, arbitrary outgroup touch, and arbitrary outgroup stab(14
participants� 4 instancesD 56 instances).

We used the standard metric—receiver operator characteristic
(ROC) area under the curve (AUC)—as the statistic of interest
for measuring the performance of the classi�er (Swets, 2014).
All classi�cations were between two classes with equal numbers
of instances and thus chance AUC was 50%. To assess the
signi�cance of our predictions, we used standard permutation
testing to build the null distribution: how well our models
might have performed purely by random chance (Good, 2013).
In each statistical case, we did the following: we shu�ed
the outcome across participants so there was no relationship
between the potentially predictive features and the condition
(Figure S10B). We then conducted the same process of training
and validation on these permuted datasets. We repeated this
procedure for 20,000 unique permutations to estimate the
probability distribution of all our reported summary statistics
empirically. Said another way, we built an estimate for how
aspects of our model might have turned out, purely by random
chance. Thep-value is the fraction of randomly permuted dataset

that resulted in an outcome equal to or more extreme than that
observed within the original data.

Each participant's exemplars were brought into a common
space, separately, by demeaning their average activation.
Speci�cally, each participant's average activation, (acrossall the
ingroup/outgroup conditions of interest) was subtracted from
each condition; thus, greater than 0 signi�ed more activation
than their average, and less than 0 signi�ed less activationthan
their average (Figure S11A left and middle). We ascertained
maximum participant-level accuracy by averaging together stab
and touch instances in each class for each participant (Figure
S11A right), and then applying the classi�er weights to those
values. For example, in Experiment 1,ingroup staband ingroup
touchwere averaged for each participant to form a singleingroup
instance; this was done likewise withoutgroup.In each cross-
validation fold, the training model was applied to a participant's
individual conditions (ingroup stab, ingroup touch, outgroup
stab, and outgroup touch) to assess AUC and, in parallel, to
ingroupand outgroupto assess accuracy (Figure S11B left). In
Experiments 2 and 3, there was no cross-validation and thus
the ingroup vs. outgroup model weights were applied, at once,
to each of the 14 participant's average ingroup and outgroup
conditions (Figure S11B right). The reason for the averaging is
that classi�er signi�cance is best assessed on the rawest form
of the data, whereas averaging improves accuracy by reducing
noise.

Averaging each participant's touch and stab trials together
for the ingroup and then for the outgroup conditions left
only 2 instances per participant: an ingroup and an outgroup
condition. Since they were both demeaned, they were the
negative of each other by de�nition, and summed to 0
necessarily. Consequently, there was one unique value only
per participant in this classi�cation, which was precisely
what we were interested in testing: the classi�er's accuracy
(right or wrong) in predicting each participant's ingroup and
outgroup. As a result, sensitivity was equal to speci�city,
so the ROC curves were symmetric. We performed all
classi�cations in MATLAB using the LibLinear toolbox (Fan
et al., 2008).

Statistics
Unless otherwise indicated, scalar nonparametric tests
(permutation tests and bootstraps) were implemented with
20,000 iterations. Each test type was corrected for multiple
comparisons with the Holm-Bonferroni procedure (Holm,
1979): (i) the two (empathy and relief networks) repeated
measures ANOVAs (Figure 2B); (ii) the three correlations
(BEES vs. empathy network ingroup bias, classi�er con�dence
vs. certainty of religious beliefs, andbaseline stab—baseline
touch in the empathy and relief networks) (Figures 2C, 3B,
Figure S3B); (iii) the three classi�cations (ingroupvs.outgroup,
ally vs. outgroup, arbitrary ingroup vs. arbitrary outgroup)
(Figures 3A,E). We list 95% con�dence intervals for the mean
value of the statistic of interest in square brackets. All correlations
calculations are linear (Pearson) and non-Frequentist parameter
likelihoods are quanti�ed by Bayes factor (BF).
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RESULTS

Localizing Empathy
Whole brain contrasts forbaseline stab> baseline touchand
baseline touch> baseline stabyielded 6 and 7 signi�cant neural
clusters of signal change, respectively (p < 0.05 FWE,Figure 1B,
Figure S2, Table S1). Consistent with previous �ndings, we
interpret the regions localized bybaseline stab> baseline touchas
the empathy-for-pain network (henceforth simply theempathy
network); it contains both a�ective (insula / anterior cingulate)
and sensorimotor (lateral occipital, fusiform, supramarginal
gyrus) components (Decety, 2010; Hein et al., 2010; Lamm
et al., 2011; Zaki et al., 2012). The network we identi�ed with
baseline touch> baseline stabhas not been reported previously.
Within the context of the experiment, one interpretation is that
the touch translates to relief that the hand was not stabbed;
we therefore provisionally refer to this as the relief network.
This network comprised the left inferior frontal gyrus, right
middle frontal gyrus, right posterior insula, precentral gyrus,
precuneus, bilateral posterior superior temporal sulci (pSTS),
and bilateral angular gyri. Several of the regions in both
networks have been implicated in neural resonance experiments
(Iacoboni et al., 1999), and shared representation paradigms
(Lawrence et al., 2006; Lamm et al., 2007). Across participants,
the responsiveness of these two networks was linearly correlated
(r D 0.46, p < 10� 4 corrected, Figure S3), possibly because
the amount of relief one experiences when a stab is avoided
is related to how much empathy one has when watching a
stabbing.

Experiment 1: Are One's Neural Responses
Modulated by the Religion of Another?
After the baseline block, the text label of each hand (e.g.,
“Hand #1”) was replaced with one of six religious a�liations
(Christian, Muslim, Hindu, Jewish, Scientologist, or atheist) for
the duration of the experiment (Figure 2A). A hand labeled
with a participant's self-reported religion is referred to as the
ingroupcondition, while the other religious beliefs comprise the
outgroupcondition (Figure S1). Neural activation for ingroups
was signi�cantly higher than for outgroups in the empathy
and relief networks when a participant saw the hands stabbed
or touched (p < 0.01 corrected for each, repeated measures
ANOVA, paired data,n D 67 participants,Figure 2B, Figures S4,
S5). We refer to this activation di�erence (averaged across stab
and touch conditions) as the “ingroup bias.”

Given that activation in empathy-associated regions has been
shown to correlate with psychometric measures and behavioral
outcomes (Singer, 2004; Singer et al., 2006), we investigated
whether the ingroup bias might correlate similarly with self-
reported empathy. Participants' ingroup bias in the empathy
network were positively correlated with their scores on the
Balanced Emotional Empathy Scale (BEES) (Mehrabian, 1997)
(r D 0.29 [0.09, 0.47],p D 0.03 corrected,Figure 2C). This bias
likely is driven by a positive correlation of BEES (BFD 7.5
substantial) with the ingroup response and a negative correlation
with the outgroup response (BFD 21very strong, Figure S6).

A whole brain contrast for ingroup> outgroup (each
combining stab and touch conditions) yielded three ROIs:
the medial prefrontal cortex (mPFC), posterior cingulate
cortex (PCC)/precuneus, and right posterior superior temporal
sulcus/temporoparietal junction (pSTS/TPJ) (Figure 2D).
These areas are involved in cognitive empathy (also known as
perspective-taking, theory of mind, or mentalizing) (Preckel
et al., 2018); we refer to them collectively as thementalizing
network (Mitchell et al., 2005; Zaki et al., 2012). There were
no signi�cant voxels in the contrastoutgroup> ingroup. The
empathy and mentalizing networks we localized are highly
consistent with previous �ndings (Zaki et al., 2012) and their
interplay has been well documented (Hooker et al., 2008;
Schnell et al., 2011; Christov-Moore et al., 2017) (Figure S7).
Group distinctions, therefore, may rely on mental simulation
that is more involved for ingroup members than for outgroup
members.

Does Activity Distinguish Religious
Ingroups From Outgroups?
We used average activation in each of the non-visual regions
(Figure S8) of the empathy and relief networks (Figure 1B)
in a logistic regression to distinguishingroup from outgroup.
A univariate model, using the average activation of the
empathy network, discriminated theingroup conditions
(stab and touch) from theoutgroup conditions (stab and
touch) with an accuracy of only 60%. A multivariate model,
however, discriminated theingroup conditions (stab and
touch) from the outgroup conditions (stab and touch) with
a receiver operator characteristic (ROC) area under the
curve (AUC) of 68%, which was signi�cantly di�erent from
chance (p < 0.01,n D 268 instances,Figure 3A). This model
distinguished ingroup from outgroup correctly for 72% of
participants (n D 67). Including all other non-visual brain
regions as features yielded similar results (AUCD 69%,
participant accuracyD 70%, Figure S9). Removing empathy-
associated regions from this expanded classi�cation, however,
decreased discriminability (AUCD 57%,p D 0.21). Although
speci�c to this classi�er, these results putatively demonstrate
that the empathy, relief, and mentalizing networks may be
both su�cient and necessary to distinguishingroup from
outgroup.

Interestingly, the classi�er in Figure 3A correctly
distinguished the ingroup and outgroup conditions in all
participants who self-identi�ed as atheist, suggesting the bias
is not so much about religion as about a�liation. Participants'
self-reported certainty of their belief (on a scale from 0 to 3)
correlated signi�cantly with classi�er prediction con�dence (r
D 0.25 [0.07, 0.41],p D 0.048 corrected,Figure 3B). In other
words, a person's certainty in their group's principles relatesto
the ease of classifying their ingroup from neural data.

Does Our Religious-Ingroup Classi�cation
Model Generalize?
To test the validity and generality of our classi�er (ingroup
vs. outgroup), we conducted two validation experiments using
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modi�ed versions of Experiment 1 and 28 independent
participants. We retrained the classi�er on the Experiment 1 data,
this time additionally including the mentalizing network ROIs
as features (the validation classi�cations were independent of the
derivation of the mentalizing network) (Figure 3C).

At the beginning of Experiment 2, hand labels were distributed
evenly and randomly between two “teams” that were said to
be at war (Figure 3D top). The two outgroups on the same
team as the ingroup were de�ned as theally group (Figure S1).
Our classi�er discriminated theally conditions from outgroup
conditions with an AUC of 65% (p < 0.05 corrected,n D 56
instances), corresponding to accurate condition identi�cation in
64% of participants (n D 14,Figure 3Epink).

In Experiment 3, participants were assigned randomly (by
a coin �ip by the participant) to the Augustinian or Justinian
team. They were then given a bracelet with their team name,
and informed that the Augustinians and Justinians were two
warring tribes. Hands were labeled as Augustinian or Justinian
(Figure 3D bottom). The hand labeled with the participant's
own team de�ned thearbitrary ingroupcondition, while the
opposing team's hand de�ned thearbitrary outgroupcondition
(Figure S1). Our classi�er discriminated thearbitrary ingroup
conditions fromarbitrary outgroupconditions with an AUC of
70%, which was signi�cantly di�erent from chance (p < 0.05
corrected,n D 56 instances), corresponding to the accurate
condition identi�cation in 71% of participants (Figure 3E
maroon).

DISCUSSION

The ingroup bias (di�erence between ingroup and outgroup
empathic response) was elicited by the simple di�erence in a
single-word text label on a hand, without any interpersonal
interaction or additional information. These �ndings are
consistent with the behavioral results of minimal group
theory: that ingroup/outgroup discrimination occurs in the
presence of even minimally-di�erentiating information (Tafjel
and Turner, 1979). Additionally, our results provide spatial
localization to an e�ect demonstrated in a recent EEG paper,
which found an event-related potential (ERP) di�erence in
the frontal lobe between religious ingroups and outgroups,
using only Christians and atheist participants (Huang and Han,
2014).

Our correlational data suggest this bias stems from an increase
in neural response for ingroup stimuli, and a decrease in
response for outgroup stimuli. While initially counterintuitive,
this result—that participants who consider themselves more
empathic show a larger ingroup bias—might be explained by
ambiguity in the BEES' hypotheticals. In questions, such as “it
would be extremely painful for me to have to convey very bad news
to another,” the BEES test does not de�ne who the other person
is. When answering empathy-related questions, participants may
not imagine a nondescript person, but instead, by default, a
member of their ingroup. Thus, it may not be surprising to �nd
a positive relationship between self-reported empathy for one's
own ingroup and a neural correlate of that bias.

The results of experiments 2 and 3 suggest that an ingroup bias
can be extended or generated arbitrarily. In Experiment 2, neural
activation to outgroup religions on the ingroup member's team
was more like activation in response to the ingroup. Experiment
3 demonstrates that group distinctions can be manufactured
arbitrarily, as neural di�erences were present after a visibly
random group assignment. The behavioral implications of these
results are consistent with �ndings that ingroup distinctions
can be modi�ed �exibly and created arbitrarily on the basis of
eye-color (Byrnes and Kiger, 1990), assigned role (Haney et al.,
1972), mutual experience (Sherif, 1961), and perceived similarity
(Ruckmann et al., 2015).

Our results shed light on a recent �nding that responses
typically thought of as empathic in nature, maybe instead
be attributable to a sense of body ownership (Bucchioni
et al., 2016). Note that the hands in our present experiment
were displayed upside-down (a third-person perspective),
yet we still observed a response in well-established empathy-
related regions. While our results do not rule out a role
for ownership in response, they preclude ownership-
dependent modulation that often accompanies a �rst-person
perspective.

Human allegiances often are more complex than a binary
classi�cation between ingroups and outgroups. Nonetheless,
empathy regions allow for the classi�cation of long-held,
newly-modi�ed and arbitrarily-formed ingroups and outgroups.
This is the �rst report of a single machine learning model on
neural activation that generalizes to multiple representations
of ingroup and outgroup. Our multivariate analysis performed
similarly on atheist participants and generalized to �exible
and arbitrary teams, suggesting that our classi�er is not
speci�c to religion. Instead, we interpret our �ndings as
evidence of brain activity di�erences based on group a�liation.
We did not have su�cient data to make a statistically-
signi�cant inference regarding the degree to which participants
perceived other religions as more or less related to their
own (e.g., would a Christian participant respond more
empathically to a Jewish-labeled hand than an atheist-labeled
hand?).

Using a single, group-level machine learning model—rather
than individually-speci�c models—to predict ingroup/outgroup
a�liations might have reduced our classi�cation accuracy by
ignoring the nuances of each participant's spatio-functionalbrain
organization. However, our model o�ers distinct advantages in
both interpretability and applicability. Our model can be applied
immediately to additional participants and similar paradigms
without �rst needing to acquire data with which to train
the parameters of a participant-speci�c classi�er. Although
it is tempting to interpret the biological meaning of brain
regions found to be signi�cant features in our multivariate
model (Figure 2C), we do not; Haufe and colleagues have
demonstrated clearly that, in most cases, classi�er weights cannot
be interpreted individually (Haufe et al., 2014). The utility from
the classi�cation portion of this experiment lies in predictions
only.

Bolstered by recent TMS results suggesting a causal link
between mentalizing regions, religious beliefs, and empathic
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behavior (Holbrook et al., 2016; Christov-Moore et al., 2017), our
present paradigm and classi�er may prove useful as an objective
diagnostic tool to measure the magnitude of one's ingroup biases
(e.g., political party, gender, race). It might therefore prove useful
for measuring the e�cacy of di�erent interventional programsto
reduce the bias between ingroup and outgroup.
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